Nexilin, a Cardiomyopathy-Associated F-Actin Binding Protein, Binds and Regulates IRS1 Signaling in Skeletal Muscle Cells
نویسندگان
چکیده
Insulin stimulates glucose uptake through a highly organized and complex process that involves movement of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Previous studies in L6 skeletal muscle cells have shown that insulin-induced activation and assembly of insulin receptor substrate 1 (IRS1) and p85α the regulatory subunit of the Type 1A phosphatidylinositol-3-kinase (PI3K), within remodeled actin-rich membrane structures is critical for downstream signalling mediating the translocation of GLUT4. The mechanism for localization within actin cytoskeletal scaffolds is not known, as direct interaction of IRS1 or p85α with F-actin has not been demonstrated. Here we show that nexilin, a F-actin binding protein implicated in the pathogenesis of familial dilated cardiomyopathies, preferentially binds to IRS1 over IRS2 to influence glucose transport in skeletal muscle cells. Nexilin stably associates with IRS1 under basal conditions in L6 myotubes and this complex is disassembled by insulin. Exposure of L6 myotubes to Latrunculin B disrupts the spatial patterning of nexilin and its transient association with IRS1. Functional silencing of nexilin has no effect on insulin-stimulated IRS1 tyrosine phosphorylation, however it enhances recruitment of p85α to IRS1 resulting in increased PI-3, 4, 5-P(3) formation, coincident with enhanced AKT activation and glucose uptake. By contrast, overexpression of nexilin inhibits transmission of IRS1 signals to AKT. Based on these findings we propose that nexilin may tether IRS1 to actin-rich structures under basal conditions, confining IRS1 signaling to specific subcellular locations in the cell. Insulin-elicited release of this constraint may enhance the efficiency of IRS1/PI3K interaction and PI-3, 4, 5-P(3) production at localized sites. Moreover, the selective binding of nexilin to IRS1 and not IRS2 may contribute to the differential specificity of IRS isoforms in the modulation of GLUT4 trafficking in skeletal muscle cells.
منابع مشابه
Nexilin: A Novel Actin Filament-binding Protein Localized at Cell–Matrix Adherens Junction
We isolated two novel actin filament (F-actin)-binding proteins from rat brain and rat 3Y1 fibroblast. They were splicing variants, and we named brain big one b-nexilin and fibroblast small one s-nexilin. b-Nexilin purified from rat brain was a protein of 656 amino acids (aa) with a calculated molecular weight of 78,392, whereas s-nexilin, encoded by the cDNA isolated from rat 3Y1 cells by the ...
متن کاملOverexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation
BACKGROUND Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding prote...
متن کاملThe Effect of Resistance Training and Endothelial Stem Cell Injection on Βeta-Actin, Phosphorylated and Total AKT of Skeletal Muscle in Type 1 Diabetic Rats
Background: Type 1 diabetes is associated with decreased skeletal muscle capillary and improper regulation of angiogenesis pathways in skeletal muscle. This research intended to study the effect of resistance training and endothelial stem cell injection on βeta-actin, phosphorylated and total AKT of skeletal muscle in type 1 diabetic rats. Methods: In this experimental study, 36 male Wistar ra...
متن کاملThe novel cardiac z-disc protein CEFIP regulates cardiomyocyte hypertrophy by modulating calcineurin signaling.
The z-disc is a structural component at the lateral borders of the sarcomere and is important for mechanical stability and contractility of both cardiac and skeletal muscles. Of note, the sarcomeric z-disc also represents a nodal point in cardiomyocyte function and signaling. Mutations of numerous z-disc proteins are associated with cardiomyopathies and muscle diseases. To identify additional z...
متن کاملThe regulation and function of the striated muscle activator of rho signaling (STARS) protein
Healthy living throughout the lifespan requires continual growth and repair of cardiac, smooth, and skeletal muscle. To effectively maintain these processes muscle cells detect extracellular stress signals and efficiently transmit them to activate appropriate intracellular transcriptional programs. The striated muscle activator of Rho signaling (STARS) protein, also known as Myocyte Stress-1 (M...
متن کامل